- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Структурность и системность наряду с пространством, временем, движением являются атрибутами, т. е. неотьемлемыми свойствами, материи. Современное миропонимание предполагает упорядоченность и организованность мира, а проблема самоорганизации бытия является одной из самых важных в науке и философии.
Существует несколько десятков определений понятия «система», однако классическим признано определение, данное основоположником теории систем Л. Берталанфи: система – это комплекс взаимодействующих элементов. Ключевым понятием в этом определении является понятие «элемент».
Например, элементами системы «газ» выступают молекулы газа. Однако сами молекулы в свою очередь могут рассматриваться в качестве систем, элементами которых являются атомы. Атом – тоже система, однако принципиально другого уровня, чем газ и, т. д. Элементами системы признаются только те предметы, явления или процессы, которые участвуют в формировании ее свойств. Комплекс элементов системы может складываться в подсистемы разного уровня, которые выполняют частные программы и представляют собой промежуточные звенья между элементами и системой.
По характеру связей между элементами все системы делятся на суммативные и целостные. В суммативных системах связь между элементами выражена слабо, они автономны по отношению друг к другу и системе в целом. Качество такого образования равно сумме качеств составляющих его элементов. Примерами суммативной системы являются груда камней, куча песка и т. п.
Несмотря на высокую степень автономности элементов, образования, аналогичные груде камней, все же рассматриваются как системы, поскольку могут сохранять устойчивость длительное время и существовать в качестве самостоятельных совокупностей. Кроме того, существует предел количественных изменений таких систем, превышение которого приводит к изменению их качества. У суммативных систем есть собственная программа существования, которая выражается в структурности (о понятии структурности мы скажем ниже).
Помимо типологии систем в зависимости от характера связи между элементами, системы различают по типу их взаимодействия с окружающей средой. В этом случае выделяют открытые и закрытые (замкнутые) системы. В закрытых системах не происходит обмена энергией и веществом с внешним миром. Такие системы стремятся к равновесному состоянию, максимальная степень которого – неупорядоченность и хаос. Открытые системы, напротив, обмениваются энергией и веществом с внешним миром. В таких системах при определенных условиях из хаоса могут самопроизвольно возникать новые упорядоченные структуры, а система в целом повышает уровень своей структурной организации.
Структурность выражается в упорядоченности существования материи и ее конкретных форм и предполагает внутреннюю расчлененность материи. Структура определяется как совокупность устойчивых, закономерных связей и отношений между элементами системы, обеспечивающих сохранение ее основных свойств.
Переход от одной области действительности к другой связан с изменением числа факторов, обеспечивающих упорядоченность, и трансформацией самих структур. Единство организованности (упорядоченности) – системности – и внутренней расчлененности – структурности – определяет существование мира как системы систем: систем объектов, систем свойств или отношений и т. п.
Элементами структуры микромира выступают микрочастицы. На данный момент известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.
Масса элементарной частицы – это масса ее покоя, которая определяется по отношению к массе покоя электрона.
Заряд элементарной частицы всегда кратен заряду электрона (-1), который рассматривается в качестве единицы. Существуют, однако, элементарные частицы, которые не имеют заряда, например фотон.
Спин элементарной частицы – это собственный момент импульса частицы. В зависимости от спина частицы делятся на две группы: с целым спином (0, 1, 2) – бозоны, с полуцелым спином (1/2 и др.) – фермионы.
Время жизни элементарной частицы определяет ее стабильность или нестабильность. По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно. Нестабильные частицы живут несколько микросекунд, стабильные не распадаются длительное время. Нестабильные частицы распадаются в результате сильного и слабого взаимодействия. Стабильными частицами считаются фотон, нейтрино, нейтрон, протон и электрон. При этом нейтрон стабилен только в ядре, в свободном состоянии он также распадается. Сейчас высказываются предположения о возможной нестабильности протона.
Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействия, иначе их называют резонансныгми. Резонансные частицы были открыты в начале 60-х гг. XX в. Время жизни резонансов – порядка 10–22 с.
Все многообразие элементарных частиц можно разделить на три группы: частицы, участвующие в сильном взаимодействии, – адроны, частицы, не участвующие в сильном взаимодействии, – лептоны, и частицы – переносчики взаимодействий.
К лептонам относятся электроны, нейтрино, мюоны, may-лептоныг, а также электронные нейтрино, моюнные нейтрино, may-нейтрино. Заряженные лептоны участвуют в электромагнитном и слабом взаимодействии, нейтральные – только в слабом.
Все перечисленные частицы различаются по заряду, массе, спину, времени жизни и другим физическим характеристикам. Однако внутри одного типа элементарные частицы совершенно идентичны, лишены индивидуальности: все электроны тождественны друг другу, все фотоны тождественны друг другу и т. п.
В 1936 г. П. Дирак предположил, что каждой частице соответствует античастица, отличающаяся от нее только знаком заряда. В 1936 г. был открыт позитрон – античастица электрона, в 1955 г. – антипротон, в 1956 г. – антинейтрон. Сейчас уже не вызывает сомнения, что каждая частица имеет своего «двойника» – античастицу, совершенно идентичную по всем физическим характеристикам, кроме заряда. В 70-80-е гг. XX в. в физике появилось множество теорий антивещества и антиматерии. Наиболее сложной формой антивещества, полученной в лабораторных условиях, являются антиядра трития, гелия. Эксперименты по получению антивещества были выполнены на серпуховском ускорителе в 1970–1974 гг. В 1998 г. получены первые атомы антиводорода.
К середине 1960-х гг. число известных адронов превысило сотню. В связи с этим возникла гипотеза, согласно которой наблюдаемые частицы не отражают предельный уровень материи. В 1964 г. была создана теория строения адронов, или теория кварков. Ее авторы – физики М. Гелл-Манн и Д. Цвейг.
Кварковая теория позволила систематизировать известные частицы и предсказать существование новых.
Основные положения теории кварков заключаются в следующем. Адроны состоят из более мелких частиц – кварков. Кварки представляют собой истинно элементарные частицы и поэтому бесструктурны.
Главная особенность кварков – дробный заряд. Кварки различаются спином, ароматом и цветом. Аромат кварка не имеет никакого отношения к аромату, понимаемому буквально (аромат цветов, духов и т. п.), это его особая физическая характеристика. Для того чтобы учесть все известные адроны, необходимо было предположить существование шести видов кварков, различающихся ароматом: u (up – верхний), d (down – нижний), s (strange – странный), c (charm – очарование), b (beauty – прелесть) и t (top – верхний). Существует устойчивое мнение, что кварков не должно быть больше.
Каждому кварку соответствует антикварк с противоположным цветом (антикрасный, антизеленый и антисиний). Кварки соединяются тройками, образуя барионы (нейтрон, протон), или парами, образуя мезоны. Антикварки, соединяясь тройками, соответственно, образуют антибарионы.
Суммарный цвет объединившихся кварков или антикварков, независимо от того, объединены три кварка (барионы), три антикварка (антибарионы) или кварк и антикварк (мезоны), должен быть белым или бесцветным. Белый цвет дает сумма красного, зеленого, синего или красного – антикрасного, синего – антисинего и т. п. Таким образом, можно говорить о цветовой симметрии в микромире.
Кварки объединяются между собой благодаря сильному взаимодействию. Переносчиками сильного взаимодействия выступают глюоны, которые как бы «склеивают» кварки между собой. Глюоны также имеют цвета, но в отличие от кварков их цвета смешанные, например красный – антисиний и т. п., т. е. глюон состоит из цвета и антицвета. Испускание или поглощение глюона меняет цвет кварка, но сохраняет аромат. Известно восемь типов глюонов. Предполагается, что кварки участвуют также в электромагнитных и слабых взаимодействиях. В электромагнитном взаимодействии кварки не меняют свой цвет и аромат. В слабых взаимодействиях – меняют аромат, но сохраняют цвет.
Согласно этой модели атом состоит из тяжелого ядра (протоны и нейтроны, связанные глюонными полями) и электронной оболочки. Протон состоит из двух t-кварков и одного d-кварка. Нейтрон состоит из одного t-кварка и двух d-кварков. Сейчас теория кварков продолжает развиваться и уточняться, поэтому ее нельзя считать окончательно сформированной.